Combining Progression and Regression in State Space Heuristic Planning

نویسندگان

  • Dimitris Vrakas
  • Ioannis Vlahavas
چکیده

One of the most promising trends in Domain Independent AI Planning, nowadays, is state-space heuristic planning. The planners of this category construct general but efficient heuristic functions, which are used as a guide to traverse the state space either in a forward or a in backward direction. Although specific problems may favor one or the other direction, there is no clear evidence why any of them should be generally preferred. This paper proposes a hybrid search strategy that combines search in both directions. The search begins from the Initial State in a forward direction and proceeds with a weighted A* search until no further improving states can be found. At that point, the algorithm changes direction and starts regressing the Goals trying to reach the best state found at the previous step. The direction of the search may change several times before a solution can be found. Two domain-independent heuristic functions based on ASP/HSP planners enhanced with a Goal Ordering technique have been implemented. The whole bi-directional planning system, named BP, was tested on a variety of problems adopted from the recent AIPS-00 planning competition with quite promising results. The paper also discusses the subject of domain analysis for state-space planning and proposes two methods for the elimination of redundant information from the problem definition and for the identification of independent sub-problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversed Planning Graphs for Relevance Heuristics in AI Planning

Most AI planning heuristics are reachability heuristics, in the sense that they estimate the minimum plan length from the initial state to a search state. Such heuristics are best suited for use in regression state-space planners, since a progression planner would have to reconstruct the heuristic function at each new search state. However, some domains (or problem instances within a certain do...

متن کامل

Heuristic Search Planner 2.0

We describe the HSP2.0 planning algorithm that entered the Second Planning Contest held in AIPS2000. HSP2.0 is a domain independent planning algorithm that implements the family of heuristic search planners that are characterized by the state space that is searched (either progression or regression space), the search algorithm used, and the heuristic function that is used. This general planner ...

متن کامل

Online Speedup Learning for Optimal Planning

Domain-independent planning is one of the foundational areas in the field of Artificial Intelligence. A description of a planning task consists of an initial world state, a goal, and a set of actions for modifying the world state. The objective is to find a sequence of actions, that is, a plan, that transforms the initial world state into a goal state. In optimal planning, we are interested in ...

متن کامل

FHHOP: A Factored Hybrid Heuristic Online Planning Algorithm for Large POMDPs

Planning in partially observable Markov decision processes (POMDPs) remains a challenging topic in the artificial intelligence community, in spite of recent impressive progress in approximation techniques. Previous research has indicated that online planning approaches are promising in handling large-scale POMDP domains efficiently as they make decisions “on demand” instead of proactively for t...

متن کامل

A Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness

Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013